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The Numerical Evaluation of a
Physical Optics Normalized Cross

Section for a Rough Surface

1. INTRODUCTION

This report is devoted to two main topics: The detailed explanation of the numerical evaluation of
the physical optics normalized cross section of a rough surface (e ) and the comparison of these
numerical results with two other approximate evaluations of the physical optics integral
representation for aO. In a previous paper1 , the general integral expression for the normalized cross
section &O was given for a surface which is randomly rough in one dimension only and some
preliminary comparisons of the three representations for e were made as a function of surface
roughness and mean surface slope. In this report, we analyze this general integral expression for a,
and show how it may be evaluated numerically. Additional comparisons are included.

The basic condition for a physical optics (PO) model to be valid is that R, >> X where R, is the

average radius of curvature of the surface and X is the em wavelength. In previous work2 . we showed
that the condition T >> X (T is the surface correlation length) is a sufficient condition for R c >> X if the
surface slopes are small, but it becomes necessary as well as sufficient if larger slopes are not excluded.
That demonstration assumed Gaussian heights and correlation. In this paper, we will be concerned

(Received for publication 16 February 1988)
1. Papa. R.J. and Lennon, J.F. (1988) Regions of Validity for Some Rough Surface Scattering

Models. "Scattering and Propagation in Random Media", AGARD Conference Proceedings,
419.

2. Papa, P.J., Lnnon, J.F., and Taylor, R.L. (1984) An Analysis of Physical Optics Models for
Rough Surface Scatterln, RADC-TR-84-195, ADA154960.
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mainly with small slope conditions. Under the assumption R, >> X. Barrick and Peake3 have given a

general expression for a PO cr with no shadowing. This expression generally4 - 7 has been evaluated by

taking the high frequency limit. k = 2rc/k - (GO) which allows decorrelation of the ensemble
averaging over the height distribution from that of the surface slope distribution followed by an

asymptotic algebraic result. It has been shown1 that their product form representation:

(o = I p, 12j ()

is valid without the restriction X - u. so long as the surface slopes are small (a/T < 1) and J is kept as

an integral form. Here. Ppq is the scattering matrix element (8), p refers to the polarization of the
incident wave and q refers to the polarization of the scattered wave (horizontal or vertical). J is
proportional to the probability density function of the surface slopes and a is the standard deviation
in surface height. Gaussian heights and correlation are again assumed. This result and the high
frequency form are then compared with numerical evaluation of the general expression for e for

forward scattering and horizontal polarization.
The conventional expression for the normalized cross section 0 ° may be defined by applying

physical optics principles to rough surface scattering, where the Kirchhoff integral is used to represent
the scattered em wave and the boundary conditions on the surface are satisfied by employing the
Fresnel plane wave reflection coefficients 1 - 8 . Multiple scattering is not included. Following these

procedures the Barrick and Peake3 generalized expression for the field scattered from a rough surface
is (horizontal polarization):

L/2 L/2
Einc = -ikieikRo/47rR°]Eh f I F(x. y)[eIklki - ks l ' fldxdy (2)

-L/2 -L/2

where

Eh incident, horizotally polarized electric field.

Ro = distance from origin to observation point,

3. Barrick, D.E. and Peake. W.H. (1967) Scatteringfrom Surfaces with Different Roughness Scales:
Analysis and Interpretation. Battelle Report, AD662751.

4. Semyonov. B.I. (1966) Approximate computation of scattering of electromagnetic waves by
rough surface contours, Radiotekhnlka i Electronika 11, 1179- 1187.

5. Barrick, D.E. (1968) Rough surface scattering based on the specular point theory, IEEE Trans.
Antennas Propag. AP-16(4). 449-454.

6. Kodis. R. (1966) A note on the theory of scattering from an irregular surface. IEEE Trans.
Antennas Propag. AP-14(1). 77-82.

7. Sancer, M.1. (1969) Shadow corrected electromagnetic scattering from a randomly rough surface,
IEEE Trans. Antennas Propag. AP-17(5). 575-585.

8. Ruck, G.T.. Barrick, D.E.. Stuart. W.D., and Krlchbaum. CX (1970) Radar Cross Section
Handbook VoL 2. New York, Plenum Press.
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i m. iI I .I| , I I I, * . .

r = xx + yy + t(x,y)z = distance from origin to point on rough surface.

k i , k8 = unit constant vectors pointing in direction of incidence and scattering.

tx, ky= local surface slopes in x and y directions at surface point

(x,y), that is, at/Dx and a/ay,

The factor Ff 4x. E,) is a function of the local normal to the surface and of local Fresnel reflection
coefficients at each surface point. The Barrick and Peake expression for F is incorrect as printed. The

correct form is given by Saficer 7 .
To form the normalized cross section of the rough surface. a". it is necessary to calculate

a0 a <Es' • Es> - <ES> 2  (3)

where < • > denotes an ensemble average over the random variables . Y' y. yxl and ky1. Here, , is

the random hight at point (x, y) and tI is the random height at point (xI. Yj)- The general PO expression
[Eq. (3)] for a' involves a ten-fold integration over the variables x. y, x1 , y1. t, . x, y. x. and y1. By
making use of the statonarity of the random process, this expression can be reduced to an eight-fold
integral. By what is traditionally referred to as a geometrical optics assumption, this result is further
reduced to a single integral form and finally evaluated as an algebraic expression.. The single integral
form can also be obtained by making use of a small slope condition 1 . For that case, though, the final
evaluation does not apply.

2. THEORY FOR SCATTERING FROM A ONE-DIMENSIONAL ROUGH SURFACE

To slmplify the general expression for 0 and to make numerical evaluations of a* inore efficient,

it will be assumed that the random distribution in heights. t, have only a one-dimensiond! variation
= t(x). It will also be assumed that the scattering takes place in the direct forward direction, so that

there is no aziMuhal vaiatiu,, k', - 0'] and tX.' there is :_ s-,,dwing The rnoqt Peneral expression

for as" for a one-dimensional rough surface involves a six-fold integral where the variables of
integration are xj. x2 . t1. 2. j, and p,2. Here. x, and x2 , are two points on the rough surface, k1 and 2 are

the random surface heights at the two points and g,1 and pL2 are the random surface slopes at the two
point". By using the fact that the surface heights are to be regarded as a stationary random process, so
that the correlation function of the surface heights. 00'. is a function only of the separation between
points r = x, - x2 . the six-fold integral for o' may be reduced to a five-fold integral. Then. using the fact
that the general expression for e" is a function only of the height differences = k - 2, the five-fold

integral can be reduced to a four-fold integral. Finally, by assuming the trivartate distribution
function for the heights 4 and slopes g, and ti, is a Gaussian function, the integration over , can be
performed analytically. Then, the remaining expression for ao" reduces to a triple integral. which can
be performed numerically using Gaussian quadrature techniques.

3



Following the development given by Hagfors 9. the expression for ao may be written as (1):

a ° = 2nk Jdt cosvxj w(T) (4)

where

v= k(sine, - sinos)

T x I - x 2 (separation between two points on the rough surface)

and

w(T) = G(T) - H. (5)

G(.) =2 f d4 2 F(p 2) f diI1 F (g 1) fd cosvz N 1, 4 2' ,. t)

P3 = trivariate distribution function in height differences and surface slopes. In addition. P i, p.
and 42' t2 are the heights and slopes of point I and point 2. respectlvey, with 4 = - 2. p 1  and

Fli) is a complicated function of the slopes I, and is given in the appendix, as is the form for the

quantity H. It can be shown that w[T) -. 0 as T -. *

There are no restrictions on the expression for o' given by [Eq. (4)1, other than the validity of
physical optics. T >> X. There are singularities in the Integrand of (Eq. (4)] but they can be shown to be
integrable and the expression has been evaluated numerically, using quadrature formulas to provide a

standard for the two limiting case solutions. For the two sets of assumptions considered here. the
eepressions in (Eq. (4)] and [Eq. (5)] reduced to the simpler form of (Eq. (6)] involving a single
integration over T:

a' = 21rk F2fUsp) JdT cOSVxT ' [X2 - X] (6)
0

where

X2 = expi - 02v 2 ( I - p))

p = exp[-T
2 /T 2)

X exp(-vz /

9. Hagfors, T. (1964) Backscattering from an undlating surface with applications to radar returns
from the moon, J. Geophyskcal Res. 69(18). 3779--3784.
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and

v, = -k(cosO1 + rr: 's).

The details of thL arguments in each case are presented in the appendix. Finally, for the case where
X - 0 and E., 1. the integral of (Eq. (6)1 can be explicitly evaluated for aY using the stationary phase
meth-fl":

Y' = ,kF 2(p (T - V T214 2)  (7)

Here, L : -av,

One of our objectives here is to examine the conditions under which each of these two forms agrees
with a direct numerical evaluation of [Eq. (4)1 and [Eq. (5)1 and to define the regions where one or the
other limiting case solutions would be preferred. These are discussed in Section 5.

3. SIMPLIFICATION OF EXPRESSION FOR NORMALIZED CROSS SECTION

[Eqs. (1) arid 15)! constitute exact physical optics expressions for the normalized cross section a of
a one diinisional rough surface These equations show that this general expression for a' involves a
four-fold integration over the variables z. ,. pI and P2. If the trivariate distribution function P,3 (, pl.

V12) in 1 ,.P I and p., is assumed to be a Gaussian. then the integration over ', may be accomplished
analytically. as shown in the appendix. [Eq. A51. that is.

I 121t4MH) e-l' cosv z Be"8 2 /4A0~ °~' f3 (27E4-Mll1)

where

A =M 1 1/21RI)

B = M) 2 /M 11 )(A I + 4 2 )

2 2 2 2
c= (1/2 IRI) [(M 2 2 - M 1 2 /Mil)( p I + 12) + 2(M 2 3 - M 2/M11},i!12]

M 1i is the co-factor of the covariance matrix R,,- One may rewrite the quanUty c as

c = ({ 2 /T 2 )( 1/M 1I)IE(.{ y + 12) + 2F p tI.21

where

I= (/(a 2 /T 2 ) ((MMM 2 2 - 2

((MlIM2 M12 ) /(2 1Ri1))

and

5



F = (1/(a 2 /T 2) ((M 1 1M2 - M12 )/(2 RI)

After considerable algebraic manipulation, one can show that E = 1 and

F = -exp(-T
2,/T 2)( I - 2T 2 /T 4 )

1 - P2= M I/(4(y4 /T 4)

By completing the square, one may rewrite C as

( 22 2 21 (91

c = (a 2 /T 2 )(I/Mll[(J. 2) + 2 + 2Fi± 1 J,12 + PA D F 1 (

Now, define jL = IL2 + Fj.tI, so that c becomes

C = [( 2 )(A.2
2  , L

J
I

T = ) + 4( 2 /T 2) (101

The question arises, what happens to the expression for I given by [Eq. (8)] as r - 0 (xI -. x 2 . It
24cF4 86

can be shown that M - (--T--)( 2 /T 2 ) and 1RI -Z, (--,- ( 8 /T 8 ). Also, as-- 0,

,-0. -- l and l 1 -. p " so that .i 2 - 0. Then we have

c r--' 0 [c1 + ,2/4(a2/4(a2/T2))],

where c I is a constant.

So that if

1= 0. c : cI

and

I -Zo (I/(27 It rI)e-Ci

Hence. I and therefore w(T) has a singularity at t = 0. However. it can be shown that this singularity is

integrable. This may be seen from [Eq. (511. Here, the behavior of W(t1 near t = 0 is governed by G(T).

which in turn, is governed by the behavior of P3 near - = 0. But. from [Eq. (A31 in the appendix,

P 3 = (2n) - 3 / 2 IRI- 1/ 2 e-Q

where

Q= uT R- 1 u.

Now.

IRI - (8o 6 /T 41(t 8 /T 8 )

and

6



Q o 1/(c 2 T8)Jc 3
2 t 2 + c 4 T3 [l±i +

'g

where c2 , C3 . and c4 are constants.

Therefore. since -- 0 and g'-p2. Q ZJ +

so that

P3 ir-- o 0

and W(t) is ilninte as r - 0. Thus. W(r) is integrable about the point r =0. How this may be

accomplished numerically is explained in Section 4.

4. NUMERICAL EVALUATION OF NORMALIZED CROSS SECTION

This section discusses the numerical evaluation Gf the simplified expression for the normalized

cross section. We adcress round off errors, integration schemes and limits of integration. Numerical

integration of large complicated functions is always challenging, but especially in our case. Using

ti2 = p2 + P i 1. we have the cross section

= 2inkjdT cos(vxJ) W(T)

where

W(T) = G(T) - H

and

G(T) fdp , d '2[F4(' 2 - Fj±1 )F(g.) e-c cos(vzB) 1/vzM C2/

A = M 11/t2IRJ)

B = (M21/Mll)(W2 + (1 - Fl 1 )

C = (a 2 /T 2 )(&12/M1 1 )+ p2/(4(a2/T2))

The function oscillates and Is subject to severe round-off error. When the common factors in the

numerator and denominator B and A are eliminated we have

B = - I - 2T2/T
2 + e 2 T2 )

and

S + - 2/T 2

where

7



a = (1- C
2 /T 2 + 1/2 1r41T4 -e -

2/T 2 ) -0 - 1 /6 ?6 /T 6

3 = (I + C2 /T 2 + 1/2'C4 /T 4 -el 2 /T 2 ) , 2*O '/ 6 -r6 /T 6

Note the first three elements of a and 3 are the first three terms of the Taylor series expansion of the,C2 .2

exponential. Let x - T for a and x = + = for (3. The Taylor series expression for ex is

a

e x + x + x 2/2 ! + . .

h=0

if lxi is made small eX = 1. For example if x = 0.01 then
S0-4 10-6

-=1 0.01 + - + .

Many or all of the significant figures could be lost by finding eX then subtracting the first few terms.
So the program was written to find (1 - ex ) and (1 + x + x 2 /2 - x) directly by the sum series for

small xi. Z .h was used forMi where

h=h

24 6C +t

M1, = 4ar[(1 - e - 2 2 /T 2 ) + 4e-2, 2 /T 2 ( T2"- T4 0 24 " (r 2 /T 2) (12)

4.1 Limits of Integration
The function drops off exponentially in 41 and g2 so we use this property to determine the

practical limits of integration. First we integrate [Eq. (AI)] to get H. The exponential part is

exp - [U./2/t)] 2

The function drops off by e-16  10-7 when gn. = + 8 61/c

As

t- o.G()-,H sow(r)= G()-H- 0

In some cases H is extremely small so It can be neglected and the behavior of only G need be considered.

For single integral physical optics (PO) we use an upper limit oftm = 4T. At that point the difference

has dropped off by e -1 6 - 10-7 .

8



The full triple integral for physical optics (TI) is a very complex function in T. Therefore the
limits cannot be determined analytically. However. we do expect a limit comparable to the P0
integration limit. We find the value of w(t) for

T
-=n - for n = 1.2 ...... 20

The first point where two consecutive values of w(r) drop below 10- 10 is taken as T,.. the upper limit
of integration. Two consecutive w(rI) are checked in case one is a null caused by the function's
oscillations. Our experience showed this method produces reasonable values for T.,ax .

Next we find the limits in 4) and jf2 The exponential part of the expression is e- c where

c = - L2-) 2 + )) 2

Good limits are

l'llmax -- -<T

= + 4 MjI/(a/T)

Either will cause c to increase by 16 which causes the function to drop off by e - 16 = 10 - 7 . Note that

W2mx changes with t sinced M, I is a function of -. When r is small M, I and a u are small so the
function is Integrated over a narrow range. When T is large the range of integration in A'2 is broader.
The flexible integration range cuts down on wasted computational effort at small T.

4.2 Integration Procedure
The next step is to pick an integration scheme. Common integration schemes are Simpson's rule

and Romberg integration which is a higher order variation on Simpson's rule. Unfortunately, the
function oscillates and the results diverge even with more than 16.000 points and days of CPU. This
occurs because Simpson's rule acts like a digital filter amplifying the large high order frequencies. At
finer step sizes, the integrated sum will grow in size for a high-frequency function (Hamming I 0 . p. 39).

Another common integration scheme is Gaussian quadrature. Plots of the function in p I and
W2 show that it has about 10 to 20 cycles of oscillation in the interval of integration. So each
integrand was divided up inlo 20 sections and each section was solved by Gauss-Legendre quadrature
and the sections were totaled up to give the integral for that integrand.

The integration is done in a very complex iterative method. Before integrating, the abscissas and
weights are determined for Gauss-Legendre integration with 2. 4. 8. 16. 32. and 64 points. Each section
was first found by 2 point quadrature, then with 4 point, then 8 point. etc. After each step the sections
and their sum are compared to see if the results have converged. The sections which converge or fall
below the error threshold are marked "done". When the total of the sections converges we have the
solution for that Integral. This Is done for all three levels of integration.

10. Hamming, R.W. (1977) Digital FMiters, Prentice Hall, New Jersey.
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In the outer two integrations (over t and p 1). an error threshold is determined which is passed to
the next inner integration (over i and W2 ). If a section or the sum falls below this threshold, the
respective portion of the inner integration is marked "done" even if it has not converged, because the
value is too small to significantly contribute to the final result. The complicated iterative method
saves computer time, but greatly increases the program complexity.

Table I shows the subroutine calls needed to perform the actual triple integration. The program is
ten subroutines deep. MAIN is the main program. It calls subroutine QUADT. Subroutines QUADT.
QUADM 1. and QUADM2 set up the parameters for the quadrature over T. g I and W2 respectively. The
QUAD subroutines call subroutines IG. IGM 1, and IGM2 respectively. These subroutines do the actual
integrations of each section of the integrand over r, gI. and W2 . The IG subroutines respectively call
WCOS. R. and P. which find the functions in r. p I. and i2. WCOS and R call the next inner-most
quadrature subroutines (QUADM I and QUADM2). Subroutine WCOS also calls SI and S3 which find
(I - ex) and (1 + x + x2/2 - ex) respectively. Subroutines R and P call F which finds FI).

Table 1. Calculation of Normalized Cross Section e

Geometric Optics Physical Optics Triple Integral
MAIN MAIN MAINI I I

F QUAD QUADTI I
IG IGI I

FNPO S3-WcOs-sI

QUADMI

IGM 1

R-F

QUADM2

IGM2

P-F

5. NUMERICAL RESULTS

In this section, graphs of cT0 will be presented as a function of the Rayleigh roughness parameter Z
for different slope conditions, C/T. For a one dimensional rough surface, three models are used to
represent the normalized cross section. a*: (I) The triple integral representation (TI) given by [Eqs. (4).
(5). Al and A5,1 (2) the single integral representation (PO) given by (Eq. (6)), valid for small slopes and
(3) the asymptotic, high frequency representation (GO), given by [Eq. (7)]. In this report, the parameters
used to generate the figures were taken to have the following values: X ranges from 0.01 m to 0.35 m,

10



0 00 and the complex dielectric constant of the surface e : 4.0. The Rayleigh parameter was varied
by varying the em wave-length X,. The angles of incidence and scattering are always fixed at 89.75'.

In Figure 1. the mean slope o/T = 0. 1, so that the PO single integral represcatatioa is valid. It can
be seen that the PO representation of e is within 0. 1 percent of the exact TI representation for all
Rayleigh parameters E. The high frequency GO representation is within 0.5 percent of the TI
representation only for X > 5. For X < 2. the GO representation is completely inaccurate,

SLOPE 0.1
1.25

1.00--

.75
(Y'0 T I

.5 0 P O .......................
GO ----.--

.25--

1 2 3 4 5 6 7 8 9 10

Figure 1. NormalWed Cross Section e0 vs. Rayleigh Parameter E, a/T = 0.1
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In Figure 2. the mean slope cr/T has been increased to 0.2. Now. there is a greater discrepancy
between the PO representation and the TI representation, but the PO representation is still within 0.5
percent of the TI representation for all values of . The GO representation is inaccurate for E < 4.
compared to the TI representation.

SLOPE 0.2

5.00--

4.00

3.00 /
0/(30O TI

2.00 PO ..........GO ... .

1.00

1 2 3 4 5 6 7 8 9 10x

Figure 2. Normalized Cross Section a' vs. Rayleigh Parameter Y. o/T= 0.2
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In Figure 3. the mean slope has been increased to 0.5. Here. the discrepancy between the PO
representation and the TI has increased to about 5 percent for Z > 5 and is as large as 20 percent In the

vicinity of E - 2. One can infer that the single integral PO representation is accurate only for slopes

cyfT < 0.5. The GO representation is within 5 percent of the accurate TI representation only for Y > 5,

SLOPE 0.5

.20 -

TI
.16 PO.....

GO ------
.12"

.08

.04-

1 2 3 4 5 6 7 8 9 10

Figure 3. Normali.ed Cross Section 0° vs. Rayleigh Parameter 1. a/T 0.5

13



In Figure 4. the mean slope has increased to 1.0. The discrepancy between the PO representation
and the TI is 20 percent for E > 5 and is as large as 45 percent near L - 3. T, s, the single Integral PO
representation is not valid or accurate for a/T > 0.5. Also. it should be noted that the high frequency GO
representation Is not accurate for sicpes a/T > 0.5, regardless of the value of the Rayleigh parameter E.

SLOPE 1
.10-

TI
•.0 8 - P O ........ ... ... ....

.08 -- --

.06-

•.04 - "'

.02

1 2 3 4 5 6 7 8 9 10

Figure 4. Normialized Cross Section a' vs. Rayleigh Parameter E, af/T =1.0
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In Figure 5, the main slope has been increased to 2.0. Here, the dlscxpancy between the single
integral PO model and the 11 is 100 percent for a range of 1 values, so that neither the PO model nor the

GO model are accu,-ate for most E values.

SLOPE 2

-051

.03
( 0 , ........... . . . . . =. . ... . . . . . . . . . .

TI
.02 -- P O ..........

GO

'.0

1 2 3 4 5 6 7 8 9 10

Figure 5. Normalized Cross Section a& vs. Rayleigh Parameter E. a/T = 2.0
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In Figure 6. the mean slope has been further increased 5.0. Now, the slope is so large that neither

the P0 model r.or the GO model are accurate for most E values.

SLOPE 5.0
.05

TI
.04 P O ...........

GO

.03
Go

.02

.01 ....... ... .. ..

-I I IItI l, , i
1 2 3 4 5 6 7 8 9 10

I

Figure 65. Normalized Cross Section a& vs. Rayleigh Parameter . o/T = 5.0
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In Figure 7. plots are shown of A (in percent) vs a/T for different Rayleigh parameter 7 regimes,

that is. for different frequency ranges. Here, the percent error

a<(TI) - a*(Po)
o0 (PO)

For E < l we took E- 1/2, for 1 < X < 4 we took E,- 3, and for E > 4 we took E = 6. It may be noted that
the greatest error lies in the Rayleigh parameter regime 1 < Z < 4. Also, the error increases as the slope

a/T increases. If one calculates according to the single integral (PO) representation, one can recover

the exact TI a* value by multiplying the o0(PO) value by the appropriait A value and adding it to the
(P) value, that is

o0 (TI) = a(PO) + Ala 0 (PO)].

ERROR OF PO APPROXIMATION
200-

150 - <1.................. < ,Y. < 4

100- -.............................. 
.

1 00%. ....... .......

10

50

0 12 0/T 3 4 5

Figure 7. Relative Error vs. Slope for Different Rayleigh Parameters
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EL DISCUSSION

In this report, it was shown that an exact representation of a physical optics model for the

normalized cross section a' could be derived for a one-dimensional rough surface. This exact
representation of e was reduced to a triple integral over the separation T and the surface slopes at two

points. g, and 92. It was demonstrated that the integral over T had a singularity, but that it was
integrable. The integrals could be performed numerically. The Romberg method of numerical

integration did not converge: a Gaussian quadrature technique had to be employed. Three models for
o", the triple integral (TI). single integral physical optics (PO). and the geometrical optics (GO) were
studied as a function of Rayleigh parameter E for different slope (a/T) regimes. The Rayleigh
parameter was varied by varying the frequency; the angles of incidence 9j and scattering 0s are fixed at
89.75. A graph of relative error A vs a/T for diflerent Rayleigh parameter E regimes was presented. It

can be used to recover the exact o' (TI) value from the single integral PO representation of a'. for this

set of conditions.

7. CONCLUSIONS

It was found that the PO model is accurate only for o/T < 0.5. regardless of the Rayleigh parameter.
It was also found that taking the high frequency limit X- 0 is not a sufficient condition for the
validity of the GO model. From the numerical results, it was shown that the surface slopes must be

small: ca/T < 0.5. From analysis of the integral representation of a. it can be shown that the
asymptotic expression (GO) for 0"° may be derived if E > 4.

18



References

1. Papa. R.J. and Lennon. J.F. (1988) Regions of Validity for Some Rough Surface Scattering

Models. "'Scattering and Propagation in Random Media". AGARD Conference Proceedings.
419.

2. Papa. R.J.. Lennon. J.F.. and Taylor, R.L. (1984) An Analysis of Physical Optics Models for
Rough Surface Scattering. RADC-TR-84-195, ADA154960.

3. Barrlck. D.E. and Peake. W.H. (1967) Scattering from Surfaces with Different Roughness Scales:
Analysts and Interpretation. Battelle Report. AD662751.

4. Semyonov. B.I. (1966) Approximate computation of scattering of electromagnetic waves by
rough surface contours. Radiotekhnika t Electrontka 11. 1179-1187.

5. Barrick. D.E. (1968) Rough surface scattering based on the specular point theory. IEEE Trans.
Antennas Propag. AP-16(4). 449-454.

6. Kodis. R. (1966) A note on the theory of scattering from an irregular surface, IEEE Trans.
Antennas Propag. AP-14(I), 77-82.

7. Sancer. M.I. (1969) Shadow corrected electromagnetic scattering from a randomly rough surface.
IEEE Trans. Antennas Propag. AP-17(5), 575-585.

8. Ruck. G.T.. Barrick, D.E.. Stuart. W.D., and Krlchbaum, C.K. (1970) Radar Cross Section
Handbook, Vol. 2. New York. Plenum Press.

9. Hagfors, T. (1964 Backscattering from an undulating surface with applications to radar returns
from the moon. J. Geophysical Res. 69(18). 3779-3784.

10. Hamming. R.W. (1977) Digital Filters. Prentice Hall. New Jersey.

19



Appendix
The Relationships in the General Integral Expression for Cross Section

The purpose of this appendix is to give the details of the respective arguments by which the results

of (Eq. (411 and [Eq. (5)I can be simplified to those of (Eq. (611 for both sets of assumptions. The first step
is to examine the elements of the integrands in more detail.

First, the quantity H used in w(T) in [Eq. (4)) is given by the expression

H =(T e-Ka2/(47ta2) [-ex - (i±/(2aT)2F (i)d L] (Al1)

The function F(p) used in (Eq. (5)1 can be reduced to the form

F[(A) = (1 - R j(y)) )(4sinO, + cosO1 ) + I1 + R(y)] ( tslnO, - coso,) (A2)

where It has been assumed that there is no y variation ( -2 = 0 ) and the scattering takes place in the

forward direction (0, = 01). Here, the Fresnel reflection coefficient is given by

R L(yj) = (cosy, - Ve -sin 2y1 )/(cosy, + N/E -sjn 2yT)

and

cosy, = (psinO0 + cosO1)/(,[l + 2g2).

The trivariate distribution function P 3 in [Eq. (5)] is given by

P 3 
= (2,0-3/2 IR-1/2 e-u T -u. (A3)

IO R-u Is a positive definite quadratic form:
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2 2
uT R-lu = 1/(21R I)[M I M 2 + 2M 1 2  (9i1 + jL2) + M 2 2 (j.2 + 92) + 2M 2 3 . 1i 21

uT = R i, 912)

I RI is the determinant of the surface height covariance matrix

((;2 - P) -8 p/a8t al

R = -_.a
2
p/a,

2 1 = 0 -8 2P/8T2  
(A 4)

(- apl/ -a
2

p/dia
2  

+a 2 p/aT2 
I'= 0

where

p = surface correlation function

p = cr2exp(-T 2 /T 2 )

It should be noted that the expression for R given by Hagfors 9 has errors in the signs of several

elements.

M q is the co-factor of the covariance matrix Rij. The triple integral in [Eq. (5)] may be reduced to

a double integral when T ; 0 by using the known expression for the cosine transform of a Gaussian

function

Jdcsv. gP 3 = 1/(2rJ/Mjjec cos(v2 B) exp(-v2 /4A) (A 5)

where

A = M 1,/(21R1)

B = (M 12 /Mii)(1i + V2)

C = (I/21RI) 1(M 2 2 - M212 /M 11 )(P I + 2) + 2JM2 3 - M1 2 /M1)142

At this point we turn to the two cases that are derived under different assumptions.

First, consider the small slope case. a/T<<1. In this case, the covariance matrix R becomes

2(; 2 - pi 0 0

R 0 0 0 (A6)

0 0 0

so that the heights and slopes are decorrelated. Then the integrations over p I am p2 in [Eq. (5)) may be

approximated by setting up 1ti = 1,2 = constant = tan y = gxp where tan y is the slope of a facet which

will prnduce a reflected wave in the specular direction:
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tany I sin01 - sino, I /(cos i + cosi%)(A7i

[Eq. (4)] for GO now reduces to a single ntegration io-n as shown in (Eq. ((l. It should Ix- noted that

since the slopes are assumed to be small lc/T << I). then p tai y so thai y - 0. which iiiiplies the
specular condition 0. = 01.

The argument for reducing the integrals in [Eq. (5)] to the result In (Eq. (61 is soinewhat different
for the high frequency case. In the GO limit the integrals over i, and P2 may be ap~proxinlated by
removing F(i 1) and F(g2) from the Integrals and setting thern equal to constants: the jtsiification for

this is the stationary phase (or specular point) argument. This argument states that for large k in the

exponential (or cosine) factor, the only surface regions which contribute to the integral are those
smoothly curving portions in a position to specularly reflect into the desired scattering direction.

Then. p, - p2 = tan y = pp and (Eqs. (4) and (5)] reduce to [Eq (6)l (see Barrick and Peake (31).
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